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ABSTRACT: Herein we present a Bi-catalyzed cross-coupling of arylboronic acids with perfluoroalkyl sulfonate salts based on a
Bi(III)/Bi(V) redox cycle. An electron-deficient sulfone ligand proved to be key for the successful implementation of this protocol,
which allows the unusual construction of C(sp2)−O bonds using commercially available NaOTf and KONf as coupling partners.
Preliminary mechanistic studies as well as theoretical investigations reveal the intermediacy of a highly electrophilic Bi(V) species,
which rapidly eliminates phenyl triflate.

Functional groups such as the trifluoromethanesulfonate
(triflate, OTf) or the nonafluorobutanesulfonate (non-

aflate, ONf) are highly useful moieties when present in organic
compounds, especially when attached to a carbon atom (C−
OTf or C−ONf).1 Indeed, C(sp2)−OTf and C(sp2)−ONf
have been utilized as surrogates of aryl halides (aka
pseudohalides) due to their ability to heavily polarize the
C−O bond, facilitating oxidative addition by d-block metals.
This strategy has been largely exploited with a myriad of
combinations of both transition metals and coupling partners,2

thus placing aryl triflates and nonaflates as routine electrophiles
in this large arena.3 From the organometallic standpoint, OTf
anions have also many attractive features. The coordinating
properties of triflate anions have been a matter of intense
debate in the recent literature.4 However, it is evident that
differently than Ar−Cl, oxidative addition complexes of Ar−
OTf would result in a remarkably weaker interaction of the
OTf anion and the metal center in solution. Furthermore, in
polar and coordinating solvents the OTf anion is generally
relegated to the outer sphere, leaving a vacant coordination site
(Figure 1A), which has been exploited for a variety of
organometallic and coordination purposes.5 Yet, the great
attributes of OTf anionshighly electronegative, poor
nucleophiles and labile ligandsinherently situates them as
one of the foulest anions to undergo C−O reductive
elimination.6

Many examples with high-valent transition metals have been
reported to accommodate OTf anions in the primary
coordination sphere.7 However, reductive elimination primar-
ily occurred at other anionic ligand sites and the M−OTf bond
remained unaltered.8 During the synthesis of trisubstituted
olefins, Gaunt and co-workers suggested that C(sp2)−OTf
bonds could be formed through an unusual reductive
elimination from a Cu(III) center,9 although further evidence
was not provided. Indeed, examples of well-defined transition
metal complexes that forge C(sp2)−OTf bonds still remain
elusive. Notwithstanding, the development of a catalytic
protocol which enables the formation of Ar−OTf from the
corresponding organometallic reagent (Ar−M) and a com-

mercially available triflate salt (MOTf) would be highly
desirable from both the synthetic and fundamental point of
view.
Our group has recently started a program to study the

catalytic redox properties of bismuth (Bi) complexes,10 to
facilitate transformations beyond the reactivity of transition
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Figure 1. (A) OTf anions as ligands in transition metal chemistry. (B)
Catalytic Ar−OTf formation through a Bi(III)/Bi(V) redox system.
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metals.11 Hence, based on the known oxophilicity of Bi
complexes12 and their ability to bind triflate,13 we envisaged
that an oxidative protocol based on the redox couple Bi(III)/
Bi(V) could fulfill this synthetic challenge. Indeed, a decade
ago Mukaiyama and co-workers demonstrated that C−OTf
bonds could be forged from Bi(V) compounds and HOTf,
albeit in low yields.14 Inspired by this early precedent, herein
we report on a catalytic oxidative coupling between arylboronic
acids and triflate salts to furnish Ar−OTf species (Figure 1B).
A rationally designed Bi complex bearing an electron-deficient
diarylsulfone ligand unlocks a catalytic redox process and
enables the use of triflate (OTf) and nonaflate (ONf) salts as
coupling partners. Preliminary mechanistic investigations and
theoretical analysis revealed that the C(sp2)−O bond
formation is extremely fast from Bi(V) and is suggested to
proceed through a five-membered transition state.
We started our investigations by optimizing the coupling of

phenylboronic acid (1a) with NaOTf to generate phenyltriflate
(2a) (Table 1). Based on our previous studies on Bi-catalyzed

fluorination, bismines featuring a diarylsulfone backbone (4a−
c) were selected as catalysts,15 together with N-fluoro-2,6-
dichloropyiridinium tetrafluoroborate ([Cl2pyrF]BF4) as oxi-
dant. To promote transmetalation, we selected K2CO3, as it
has been recently demonstrated to be an excellent base for this
purpose.16 In our initial attempts, the unsubstituted bismine
catalyst (4a) provided no reactivity toward 2a (entry 1).
However, when a CF3 group was introduced in meta-position
to the Bi (4b), an encouraging 11% of 2a was obtained;
interestingly, the formation of protodeboronation byproduct 3
was largely suppressed (entry 2). In line with these results,
when two CF3 are introduced in the backbone of the sulfone
(4c) the reactivity toward 2a increased to 32%, while the
formation of 3 was still largely reduced (entry 3). When
K2CO3 is replaced by NaF, a reversed trend in the product
distribution is observed, substantially favoring undesired 3
(entry 4). Surprisingly, addition of 4 Å molecular sieves (MS)
boosted the formation of 2a to 54% yield, while formation of 3
was still minimized (entry 5). Remarkably, when K2CO3 was

replaced by the weaker Na3PO4, nearly quantitative formation
of 2a was achieved (entry 6). The use of 5 Å MS proved crucial
to completely suppress the formation of 3, thus obtaining the
desired 2a in >95% yield (90% isolated) (entry 7).
Unfortunately, lower catalyst loadings resulted in poor yields
(entry 8).
With the optimal conditions in hand, the scope of the Bi-

catalyzed C(sp2)−OTf bond reaction was investigated using a
variety of arylboronic acid derivatives (Table 2). The

methodology boded well with Me groups in both para- (2b)
and ortho-positions (2c). Remarkably, when the steric
encumbrance at the ortho-position was further increased,
excellent yields of the corresponding triflate were obtained (2d
and 2e). Furthermore, the presence of alkyl moieties in other
positions of the aryl ring did not affect the reactivity (2f and
2g). The protocol accommodates various functional groups,
including ethers (2h and 2i) and halogens (2j, 2k, and 2l),
albeit in moderate yields. Arylboronic acids substituted with a
trimethylsilyl group (TMS), Ph, or an ester at the para-
position afforded good to excellent yields of the corresponding

Table 1. Optimization of the Reaction Conditionsa

aReactions performed at 0.025 mmol of 1a. Yields determined by 19F
NMR using 1-fluoro-4-nitrobenzene as internal standard. bIsolated
yield of pure material of a reaction performed at 0.3 mmol of 1a.

Table 2. Scope of the Bi-Catalyzed Oxidative Coupling of
Arylboronic Acids and Sodium Triflatea

aReaction conditions: 1 (0.3 mmol), NaOTf (0.33 mmol), 4c (0.03
mmol), [Cl2pyrF]BF4 (0.33 mmol), Na3PO4 (0.6 mmol), and 5 Å MS
(120 mg) in CHCl3 at 60 °C for 16 h. Yields of isolated pure material.
bReaction performed at 90 °C with 2.0 equiv of NaF as base. cYields
determined by 19F NMR using 1-fluoro-4-nitrobenzene as internal
standard. dReactions performed at 0.025 mmol of the corresponding
arylboronic acids. eReaction performed at 90 °C with 4.0 equiv of
Na3PO4 as base.
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aryl triflates (2m−2o). Arylboronic acids bearing unsaturated
moieties boded well in this methodology, as exemplified by the
presence of alkynyl (2p) and vinyl (2q) groups. In spite of the
large variety of arylboronic acids amenable for this trans-
formation, moderate yields were obtained in the presence of
certain functionalities. Due to the high reactivity toward
oxidation with [Cl2pyrF]BF4, fluorene derivative 2r was
obtained in 38% yield.15 Substrates bearing strong electron-
withdrawing groups such as CF3 (2s) and reactive carbonyl
functionalities at the para-position (2t and 2u) also struggled
to undergo C−O bond formation, demonstrating some
limitations to the scope of this reaction.
Having established a protocol for the successful coupling of

NaOTf, we turned our attention to the use of less nucleophilic
nonaflate salts as coupling partners. A brief re-examination of
the reaction parameters revealed bismine nonaflate 4d as the
catalyst of choice to couple arylboronic acids with
commercially available KONf.15 With the optimized conditions
shown in Table 3, Ph−ONf (5a) was isolated in a satisfactory

97% yield. The various arylboronic acids scrutinized in the
nonaflate synthesis revealed comparable reactivity to NaOTf.
Aryl nonaflates containing ortho-substituents such as Br (5b)
and Me (5c) were obtained in excellent yields. Furthermore, a
TMS moiety can also be accommodated to the protocol (5d)
as well as unsaturated alkynyl functionalities (5e).
The unprecedented catalytic C−OTf and C−ONf bond

forming reaction using 4c and 4d led us to explore the
operative mechanism governing this transformation. First, we
interrogated the transmetalation step between 1a and 4c
(Figure 2A). When the reaction was performed in the presence
of Na3PO4 and 5 Å MS, transmetalation occurred efficiently
and 6 was obtained in 86% yield (entry 1). In the absence of
base, 6 was also obtained in slightly lower yields (62%, entry
2). In sharp contrast, when the reaction was performed without
MS (entry 3), formation of 6 was dramatically reduced (21%).
In the absence of both MS and Na3PO4, 6 was not detected.
These results demonstrate the importance of molecular sieves
in this transformation, not only as a dehydrating agent17 but
also as a potential heterogeneous Brønsted base,18 promoting
transmetalation to the Bi(III) center. At this point, the
oxidation−reductive elimination sequence from phenylbismine
6 was studied utilizing different oxidants and triflate sources
(Figure 2B, top). After oxidizing 6 with XeF2 to the high-valent
Bi(V) difluoride species,10b,15 TMSOTf was added, resulting in
a rapid color change from pale to dark yellow. Analysis of the

reaction crude revealed quantitative formation of 2a. This
result points to the formation of a highly electrophilic Bi(V)
intermediate (7a) bearing an OTf moiety, as a consequence of
fluoride abstraction by TMSOTf. Indeed, when TMSOTf was
added at −41 °C, intermediate 7a could be detected by HRMS
(Figure 2B). Furthermore, using [Cl2pyrF]BF4 as an oxidant
together with NaOTf similar yields for 2a were obtained (92%,
Figure 2B, bottom). It is important to mention that only trace
amounts of fluorobenzene were detected, which shows the
preferential formation of C−OTf over C−F bonds (vide
inf ra).19 Related intermediates have been previously postulated
by Mukaiyama, in the C(sp2)−OTs coupling from Bi(V)
intermediates.14 Based on these experimental results, prelimi-
nary theoretical studies were performed to investigate a
putative reductive elimination from 7, bearing both a F (7a)
or an OTf (7b) as counterions.15 As shown in Figure 2C, two

Table 3. Scope of the Bi-Catalyzed Oxidative Coupling of
Arylboronic Acids and Potassium Nonaflatea

aReaction conditions: 1 (0.3 mmol), KONf (0.33 mmol), 4d (0.03
mmol), [Cl2pyrF]BF4 (0.33 mmol), Na3PO4 (1.2 mmol) and 5 Å MS
(120 mg) in CHCl3 at 60 °C for 16 h. Yields of isolated pure material.

Figure 2. (A) Study of the transmetalation step: influence of the
molecular sieves and the base. (B) Stoichiometric sequence of
oxidative addition−reductive elimination. (C) Theoretical analysis of
the C−O bond forming step. aYields determined by 1H NMR using
1,3,5-trimethoxybenzene as internal standard. bYields determined by
19F NMR using 1-fluoro-4-nitrobenzen as internal standard.
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possible scenarios were postulated. On one hand, reductive
elimination can occur through a three-membered transition
state (Figure 2C, pathway a), reminiscent of concerted
reductive eliminations performed by d-block elements.
Alternatively, reductive elimination could also occur via a
five-membered transition state (Figure 2C, pathway b), where
two oxygens of the OTf are involved. This latter hypothesis has
been previously invoked to explain the selectivity of Bi-
mediated couplings such as α-arylation of phenols20 and N-
arylation of pyridones,21 among other transformations.22 In
accordance with these previous reports, our theoretical analysis
predicts that the five-membered TS2 is slightly favored over
TS1, pointing toward TS2 as the preferable pathway for the
C−O bond forming event. NBO analysis on the Bi center also
provided additional information about this process.23 In the
case of 7a, the NBO charge on the Bi decreases from 2.17 to
1.84 in TS1 and 1.88 in TS2 and is further reduced to 1.50 in
8. The same trend is observed from 7b.15 This progressive
change in charge at the metal center has been previously
observed in high-valent Cu cross-couplings,24 suggesting a
concerted reductive elimination through the metal.
Taken these results together, the reaction is proposed to

follow the catalytic cycle depicted in Figure 3. Initially, bismine

A undergoes transmetalation (TM) with the corresponding
arylboronic acid, thus forming aryl bismine B. Subsequently, B
undergoes formal oxidative addition (OA) with [Cl2pyrF]BF4,
furnishing the proposed high-valent Bi(V) intermediate C.
Reductive elimination (RE) from C delivers the desired aryl
triflate with concomitant regeneration of A. Due to the
structural similarities between OTf and ONf, we believe that a
similar mechanism is operating for the coupling of the latter.
In summary, an unprecedented oxidative coupling of

arylboronic acids with triflate and nonaflate salts has been
developed exploiting the reactivity of the Bi(III)/Bi(V) redox
couple. A highly electron-withdrawing diarylsulfone ligand
unlocked a catalytic process which proceeds under mild
conditions and accommodates various functional groups. The
results presented in this study unveil bismuth redox catalysis as
a promising tool to perform transformations beyond the scope
of transition metals, while mimicking their fundamental
organometallic steps.
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